
BE12007 PRB October 30, 2011 14:34

Important Notice to Authors
Physical Review B has recently changed its composition service provider, effective with the first issue of volume 83
(January 2011). You will note that the cover letter accompanying your proofs, as well as instructions on how to return
proof corrections, are somewhat different than in the past. We thank you for your patience during the transition period
and regret any inconvenience this may cause.

Attached is a proof copy of your forthcoming article in Physical Review B. The Article ID is BE12007.

To print the pdf proof full size, be sure that you have not selected the “fit to page” option.

Your paper will be in the following section of the journal: Articles

Figures submitted electronically as separate PostScript files containing color usually appear in color in the online journal.
However, all figures will appear in the print journal in black and white if you have not requested color-in-print reproduction and
paid the applicable charges for color figures. For figures that will be color online but grayscale in print, please insure that the text
and caption clearly describe the figure to readers who view it only in black and white.

No further publication processing will occur until we receive your response to this proof.

Questions and Comments to Address

Your article has 10 pages.

The numbered items below correspond to numbers in the margin of the proof pages pinpointing the source of the question and/or
comment. The numbers will be removed from the margins prior to publication.

1 Please check change to “Im” in Eq. (12) and throughout.
2 Please check city for Ref. 8.
3 Please provide pg. no. for Ref. 18.
4 Please check Ref. 25.

Q: This reference could not be linked due to a possible error in any of the following: journal title, author name(s), volume,
page, or year. Please check all information for accuracy and correct as necessary.

Other Items to Check
� Please check your title, author list, receipt date, and PACS numbers. More information on PACS numbers is available online

at http://publish.aps.org/PACS/.
� Please proofread the article very carefully.
� Please check that your figures are accurate and sized properly. Figure quality in this proof is the quality to be used in the

online journal. To achieve manageable file size for online delivery, some compression and downsampling of figures may have
occurred. Fine details may have become somewhat fuzzy, especially in color figures. The print journal uses files of higher
resolution and therefore details may be sharper in print. Figures to be published in color online will appear in color on these
proofs if viewed on a color monitor or printed on color printer.

Ways to Respond
� Web: If you accessed this proof online, follow the instructions on the web page to submit corrections.
� Email: Send corrections

To: prbproofs@aptaracorp.com
Subject: BE12007 proof corrections

� Fax: Return this proof with corrections to +1.703.352.8862. Write Attention: PRB Project Manager and the
Article ID, BE12007, on the proof copy unless it is already printed on your proof printout.

� Mail: Return this proof with corrections to Attention: PRB Project Manager, Physical Review B,
c/o Aptara, 3110 Fairview Park Drive, Suite #900, Falls Church, VA 22042-4534, USA.

http://publish.aps.org/PACS/


BE12007 PRB October 30, 2011 14:34

PHYSICAL REVIEW B 00, 004500 (2011)1

Superconductivity in multiband disordered systems: A vector recursion approach2

Shreemoyee Ganguly3

Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD-III Salt Lake City, Kolkata 700098, India4

Indra Dasgupta5

Department of Solid State Physics and Centre for Advanced Materials, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India

6

7

Abhijit Mookerjee8

Department of Materials Science and Advanced Materials Research Unit, S.N. Bose National Centre for Basic Sciences,
JD-III Salt Lake City, Kolkata 700098, India

9

10

(Received 26 May 2011; revised manuscript received 19 October 2011; published xxxxx)11

We present a vector recursion based approach to study the effect of disorder on superconductivity in a system
modeled by the two-band attractive Hubbard model. We use the augmented space formalism for the disorder
averaging. In the presence of only intraband pairing in a two-band disordered system with disorder in either or
both bands, our calculations reveal that the gap survives in the quasiparticle spectrum; similar to single band
systems. However, for interband pairing the gap in the quasiparticle spectrum ceases to exist beyond a critical
value of the disorder strength. In the presence of both interband and intraband pairing interaction, depending
on the relative magnitude of the pairing strength, only a particular kind of pairing is possible for a half filled
two-band system.

12

13

14

15

16

17

18

19

DOI: 10.1103/PhysRevB.00.004500 PACS number(s): 71.10.−w, 71.23.−k, 74.20.−z20

I. INTRODUCTION21

The study of superconductivity in multiband systems22

has received considerable interest recently because of the23

discovery of superconducting materials where the Fermi24

surface is dominated by several bands. Examples include25

MgB2 where the Fermi surface is determined by the σ26

and π bands arising from the B-p orbitals. It is now27

confirmed that the superconductivity in this material can be28

explained with the Bardeen-Cooper-Schrieffer (BCS) theory29

with two different superconducting gaps in agreement with30

experiments.1 A description of unusual p-wave superconduc-31

tivity in Sr2RuO4 also necessitates a multiband model for32

superconductivity.2,3 Very recently the discovery of super-33

conductivity in Fe pnictides, whose Fermi surface is built34

out of the t2g orbitals of Fe, has again emphasized the35

importance of the study of superconductivity in multiband36

systems.4,5
37

The complex problem of superconductivity in multiband38

systems was first studied by Suhl et al.6 using a tight-binding39

model Hamiltonian with two bands. The model included40

intraband pairing and also the interband hopping of pairs41

of electrons belonging to the same band. They showed that42

pairing could occur in each band and, because electron-phonon43

interactions may have different strengths in different bands,44

this can give rise to two different superconducting gaps. But45

in the special case of only interband scattering, a single gap46

was found to be present in the density of states unless the band47

dispersion of the two bands had different shapes.7 A similar48

model was also investigated by Machida et al.8 for the study49

of superconductivity in multiband systems. Recently Moreo50

et al.9 revisited the theory of superconductivity in multiband51

systems in the context of Fe pnictides. In particular they have52

emphasized the importance of interband pairing in multiband53

systems in which, in contrast to earlier studies,6,8 Cooper 54

pairs are formed by electrons belonging to two different 55

bands. The calculations by Moreo et al.9 revealed that three 56

different regions can result from a purely interband pairing as 57

a function of the interaction parameter: (i) a normal regime 58

where the ground state is not superconducting; (ii) an exotic 59

superconducting “breached” regime where one of the bands 60

is gapped at the Fermi level while the other is not, and (iii) 61

a superconducting regime resembling the BCS states, at large 62

attractive coupling. The existence of an exotic superconducting 63

“breached” regime with both gapped and gapless quasiparticle 64

excitations was also discussed by Liu and Wilczek10 in 65

the context of cold atoms and quantum chromodynamic 66

systems. 67

The preceding discussion suggests that superconductivity 68

in multiband systems is not only interesting but markedly 69

different from its single-band counterpart. In this context it 70

will also be important to understand the role of disorder 71

in multiband superconducting systems since disorder is an 72

important factor that has a profound impact on superconduc- 73

tivity. While the effect of disorder on superconductivity in 74

single-band systems have been actively investigated, there are 75

very few systematic studies of the role of disorder in multiband 76

systems. 77

The effect of disorder in single-band systems is usually 78

discussed within the framework of Anderson’s theorem.11 For 79

s-wave superconductors Anderson’s theorem guarantees the 80

survival of an absolute gap in the quasiparticle spectrum 81

of the system provided the perturbation due to disorder 82

preserves time-reversal invariance and the coherence length 83

is long enough to ensure that the pairing amplitude � 84

does not fluctuate. There exists a body of work where the 85

Bogoliubov–de Gennes (BdG) equations,12 which provide 86
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a natural framework for a fully microscopic description87

of the phenomena of superconductivity, have been solved88

in conjunction with the mean-field single-site coherent po-89

tential approximation (CPA),13–15 in order to understand90

the physics of superconductivity in single-band disordered91

systems.92

Recently we have proposed an efficient real-space scheme93

to solve the BdG equations for single-band disordered attrac-94

tive Hubbard models.16 The aim of this paper is to propose95

a real space, vector recursion based approach to study the96

effect of disorder on a multiband attractive-U Hubbard model97

where the configuration averaging, as in our earlier study, will98

be based on the augmented space recursion (ASR) formalism99

introduced by one of us.17 The ASR gives us the flexibility of100

introducing the effects of random configuration fluctuations in101

the local environment of a site. It does not violate analytical102

properties of the configuration-averaged Green’s function,103

which form an essential ingredient of the solution. It can104

deal easily with the effect of either off-diagonal disorder or105

inhomogeneous disorder such as clustering, segregation, and106

short-ranged ordering, which usually occur intrinsically in107

most disordered materials due to different chemical affinities108

of the constituents.109

We shall begin by studying superconductivity in an or-110

dered two-band, tight-binding, attractive-U Hubbard model,111

using our vector recursion technique. Then, having satisfied112

ourselves with the reliability of our methodology, we shall113

proceed to study the effect of disorder on the same model.114

The rest of the paper is organized as follows: in Sec. II we115

shall discuss our method in some detail. Section III will be116

devoted to results and discussions for multiband ordered and117

disordered systems. Finally in Sec. IV we will summarize our118

study.119

II. METHODOLOGY120

A. Multiband attractive-U Hubbard model121

To study the effect of disorder on a multiband s-wave122

superconducting system we shall begin with the simplest123

model, namely, the two-band attractive Hubbard Hamiltonian124

in model lattices. The Hamiltonian is given by125

H = −
∑
〈i,j〉

∑
m,m′,σ

tim,jm′ c
†
imσ cjm′σ +

∑
i,m,σ

(εim − μ)nimσ

−
∑
i,m

|Umm(i)|nim↑nim↓

−
∑

i

∑
m,m′,σ,σ

′
|Umm′(i)|nimσnim′σ ′ . (1)

Here m, m′ are the band index. This Hamiltonian is a126

generalization of the single-band Hubbard Hamiltonian and127

is similar to earlier studies by Annett and co-workers.3,18
128

Our model Hamiltonian allows for both intraband as well as 129

interband pairing. The interband pairing term is similar to 130

that of Annett and co-workers3,18 and Moreo et al.9 which 131

allows Cooper pairs to be formed by electrons belonging 132

to two different bands. The earlier studies by Suhl et al.6 133

and Machida et al.8 did not consider the pairing of electrons 134

belonging to two different bands but a pair tunneling term 135

given by 136

−
∑

i

∑
m,m′,σ,σ

′

∣∣Ut
mm′(i)

∣∣(cimσ cimσ ′)†cim′σ cim′σ ′ . (2)

This term allowed for the tunneling of the Cooper pairs from 137

one band to the other with a tunneling strength given by 138

Ut
mm′ . 139

In Eq. (1) {c†imσ },{cimσ } are the usual electron creation and 140

annihilation operators for orbital m with spin σ on site labeled 141

i of a square or cubic lattice. The index m runs over the two 142

bands labeled s and l, μ is the chemical potential, and εim is 143

the local on-site energy at the site labeled i in the band m. The 144

hopping integral tim,jm′ has four components:: tis,js = ts is the 145

hopping integral in the s band from a site i to one of its nearest 146

neighbors j and til,j l = tl is that in the l band from a site to 147

one of its nearest neighbors. The interband hopping integrals 148

are tis,il = tsl , which is the hopping integral from a site in 149

the s band to the same site in the l band (or vice versa) and 150

tis,j l = tnn
sl , which is the hopping integral from a site i in the 151

s band to one of its nearest neighbors j in the l band (or vice 152

versa). In this work we have not included the interband intersite 153

hopping integral tnn
sl . However, we do consider the effect of 154

on-site interband hopping integrals tsl in some of our analysis. 155

As we will see subsequently, tsl will not alter the qualitative 156

features of our results. In this model, Uss = −|Us | corresponds 157

to a local Hubbard parameter leading to a pairing interaction 158

potential for s-band electrons and Ull = −|Ul| correspond to 159

a local Hubbard parameter for l-band electrons. Here, both the 160

attractive interactions give rise to s-wave pairing since they 161

are local. The interband pairing interaction Umm′ = −|Usl| is 162

the local attractive potential between electrons in the s and l 163

band. 164

The BdG mean-field decomposition12 of the interaction 165

terms give expectation values to the intra- and interband pairing 166

amplitudes, 167

�m = −|Um| 〈cim↓cim↑〉; �sl = −|Usl| 〈cil↓cis↑〉, (3)

and also to the intra- and interband “densities,” 168

〈nimσ 〉 = 〈cimσ c
†
imσ 〉 ; 〈nislσ 〉 = 〈cilσ c

†
isσ 〉. (4)

The effective quadratic BdG Hamiltonian becomes 169

Heff = −
∑
〈i,j〉

∑
m,m′,σ

tim,jm′ c
†
imσ cjm′σ +

∑
imσ

(εim − μ̂im) nimσ −
∑

im,m′,σ

|Umm′ | 〈nimm′σ 〉
2

c
†
imσ cjm′σ

+
∑
im

(�mc
†
im↑c

†
im↓ − �∗

mcim↑cim↓) +
∑

i,m,m′
(�mm′c

†
im↑c

†
im′↓ − �∗

mm′cim↑cim′↓), (5)
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where μ̂im = μ − |Umm|〈nim〉/2 incorporates the site depen-170

dent Hartree shift.171

This effective Hamiltonian can be diagonalized by using172

the Hartree-Fock-Bogoliubov (HFB)19 transformation,173

cim↑ =
∑

n

[βn↑um(ri,E) − β
†
n↓v∗

m(ri,E)],

(6)
cim↓ =

∑
n

[βn↓um(ri,E) + β
†
n↑v∗

m(ri,E)],

where β and β† are quasiparticle operators, and174

um(ri,E), vm(ri,E) are the quasiparticle amplitudes associated175

with an eigenenergy En.176

In the Hartree-Fock mean-field approximation incorporat-177

ing charge-order and superconducting decoupling along with178

the above canonical transformation we have179 ⎛⎜⎝ Hss �s −Nsl �sl

�∗
s −Hss �∗

sl Nsl

−Nls �ls Hll �l

�∗
ls −Nls �∗

l −Hll

⎞⎟⎠
⎛⎜⎝us(ri,E)

vs(ri,E)
ul(ri,E)
vl(ri,E)

⎞⎟⎠

= E

⎛⎜⎝us(ri,E)
vs(ri,E)
ul(ri,E)
vl(ri,E)

⎞⎟⎠ , (7)

where (the excitation eigenvalue E � 0)180

Hmmum(ri,E) = (εim − μ̂im)um(ri,E) −
∑

j

tmum(rj ,E),

Nmm′um′ (ri,E) =
{

1

2
|Umm′ |〈nmm′ 〉 + tmm′

}
um′(ri,E)

+
∑

j

tnn
mm′um′ (rj ,E). (8)

Here j is the nearest neighbor of i. We can express the181

particle densities and the pairing amplitudes in terms of the182

quasiparticle amplitude as183

〈nim〉 = 2
∫

dE|um(ri,E)|2f (E)

+ |vm(ri,E)|2[1 − f (E)],

〈nimm′ 〉 = 2
∫

dEum′ (ri,E)u∗
m(ri,E)f (E)

+ v∗
m′ (ri,E)vm(ri,E)[1 − f (E)],

(9)
�m = |Um|

∫
dEv∗

m(ri,E)um(ri,E)f (E)

−um(ri,E)v∗
m(ri,E)[1 − f (E)],

�mm′ = |Umm′ |
∫

dEv∗
m(ri,E)um′ (ri,E)f (E)

−um(ri,E)v∗
m′ (ri,E)[1 − f (E)],

where f (E) is the Fermi function. A fully self-consistent184

solution of Eq. (7) can be obtained provided all the normal185

potentials (|Um|nim and |Umm′ |nimm′ ) and anomalous potentials186

(�im and �imm′) are determined self-consistently from Eq. (9).187

The self-consistency criteria is set to 10−6 for calculation of188

all self-consistent parameters throughout the present study.189

B. Treatment of disorder: Augmented space formalism 190

The class of systems which we shall study here will 191

be binary substitutionally disordered alloys. We shall study 192

randomness in the diagonal site energies, either in one of the 193

two bands, say the l band ({εil}); or in both the bands ({εis} 194

and {εil}). We shall introduce site occupation variables {ni} 195

(this should not be confused with the number operator nimσ ) 196

which take values 1 or 0 according to whether the site labeled 197

i is occupied by an A type or a B type of atom, 198

εim = εA
m ni + εB

m (1 − ni) = εB
m + δεmni, (10)

where, m = s or l and εA
s , εB

s and εA
l , εB

l are the possible 199

on-site energies corresponding to the s and l band, respectively. 200

We define the strength of disorder in the band labeled m by 201

Dm = |δεm| = |εA
m − εB

m|. 202

If the concentrations of A- and B-type atoms in the solid 203

are x and y, then the probability density of ni , in the absence 204

of short-range order, is given by 205

p(ni) = xδ(ni − 1) + yδ(ni). (11)

The “configuration space” of ni , �i , has rank 2 and is spanned 206

by the states |Ai〉 and |Bi〉 in which the parameter εim take the 207

values εA
m and εB

m, respectively. 208

The augmented space formalism associates with each 209

random variable ni an operator Ñi acting on its configuration 210

space �i and whose spectral density is its probability density. 211

That is, 1212

p(ni) = − 1

π
lim
δ→0

Im 〈∅i |[(ni + iδ)Ĩ − Ñi]
−1|∅i〉, (12)

where |∅i〉 = √
x|Ai〉 + √

y|Bi〉 is the so-called “reference” 213

state. This nomenclature arises from the fact that the aug- 214

mented space theorem20 states that the matrix element in this 215

state is the configuration average. The other basis member is 216

|1i〉 = √
y|Ai〉 − √

x|Bi〉 which is a state with one “fluctua- 217

tion” about the reference state at the site i. Alternatively, it is 218

denoted by |{i}〉 where {i} is the “cardinality sequence” of sites 219

at which there are fluctuations. The configuration states |Ai〉 220

and |Bi〉 are the eigenkets of Ñi corresponding to eigenvalues 221

1 and 0. The representation of the operator Ñi in the basis 222

{|∅i〉,|ii〉} is 223

Ñi = xP∅i
+ yP1i

+ √
xy

[
T∅i ,1i

+ T1i ,∅i

]
= xI + (y − x)P1i

+ √
xy

[
T∅i ,1i

+ T1i ,∅i

]
. (13)

Here, I is the identity operator, PX are the projection 224

operators |X〉〈X|, and TXY are the transfer operators |X〉〈Y |, 225

and X,Y are either ∅i or 1i . 226

Let us define a configuration fluctuation creation operator 227

at the site labeled i as γ
†
i |∅i〉 = |1i〉. Since each site can 228

either be ∅ or 1, this is a fermionlike creation operator with 229

γ
†
i |1i〉 = 0. Similarly we define a configuration fluctuation 230

annihilation operator γi |1i〉 = |∅i〉 and γi |∅i〉 = 0. In terms of 231

these operators P1i
= γ

†
i γi counts the number of configuration 232

fluctuations at the site i, and of the transfer operators: 233

T∅i ,1i
= γi annihilates and T1i ,∅i

= γ
†
i creates a configuration 234

fluctuation at the site i. 235

The operator Ñi in this new representation is 236

Ñi = xI + (y − x) γ
†
i γi + √

xy (γ †
i + γi) (14)
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So,237

εim = εB
m + δεm ni has associated with it an operator,

ε̃im = 〈εm〉I + (y − x)δεm γ
†
i γi + √

xy δεm (γ †
i + γi)

(15)

obtained by replacing ni with its operator form Ñi [see238

Eq. (14)] where 〈εm〉 refers to the average:239

〈εm〉 = xεA
m + yεB

m (16)

with m = s or l, δεs = εA
s − εB

s , and Ds = |δεs |, δεl = εA
l −240

εB
l , and Dl = |δεl|.241

The augmented space theorem20 states that the configura-242

tion average of a function of a set of independent random243

variables A({ni}) can be expressed as a matrix element244

in the full configuration space of the disordered system245

� = ∏⊗
�i , 246

〈〈A({ni})〉〉 = 〈{∅}|Ã({Ñi})|{∅}〉, (17)

where |{∅}〉 = ∏⊗
i |∅i〉 and Ã({Ñi}) is the representation of 247

the operator Ã in the configuration space �, constructed by 248

replacing all random variables ni by their corresponding 249

operators Ñi . A compact way of representing a basis in 250

configuration space is to denote it by the set of sites where 251

we have a configuration fluctuation. This set is called the 252

cardinality set and the meaning of the empty cardinality 253

set {∅} then becomes obvious. For the present system the 254

Hamiltonian contains the random variables {εis} and{εil}. So 255

we need to construct the Hamiltonian in the augmented space 256

� = H ⊗ ∏⊗
i �i by replacing all the random variables εis 257

and εil by the corresponding operators shown in Eq. (15). The 258

effective augmented space Hamiltonian becomes 259

H̃eff = −
∑

〈i,j〉,m,m′,σ

tim,jm′ c
†
imσ cjm′σ ⊗ I +

∑
imσ

(〈εm〉 − μ̂im)nimσ ⊗ I +
∑
imσ

δεm nimσ ⊗ {(y − x)γ †
i γi + √

xy(γ †
i + γi)} · · ·

−
∑

im,m′,σ

|Umm′ | 〈nimm′σ 〉
2

c
†
imσ cjm′σ ⊗ I +

∑
im

(�mc
†
im↑c

†
im↓ − �∗

mcim↑cim↓) ⊗ I · · ·

+
∑

i,m,m′
(�mm′c

†
im↑c

†
im′↓ − �∗

mm′cim↑cim′↓) ⊗ I. (18)

In the special case when there is randomness in just one of the260

bands (say l), in Eq. (18) we put δεs = 0 and 〈εs〉 = εs .261

After constructing the Hamiltonian in augmented space the262

augmented space theorem then automatically ensures that the263

configuration average is a projection onto the state with no264

“fluctuations,”20
265

〈〈G(i,i,E)〉〉 = 〈∅|G̃(i,i,E)|∅〉,
where G̃ = (EĨ − H̃

eff
)−1. All operators here are 4 × 4 ma-266

trices (here double underbar indicates 4 × 4 matrices) in the267

space spanned by the two bands and the electron-hole degrees268

of freedom21 arising in BdG formalism.269

The Green’s functions are obtained using the vector270

recursion technique introduced by Haydock and Godin.22,23
271

The vector recursion has been described in great detail in the272

given references and in our earlier work.16 We shall indicate273

the main points and the interested reader may refer to the274

quoted references for details. Once the BdG Hamiltonian275

is set up as in Eq. (7) and the effective augmented space276

transformation carried out as in Eq. (18), the vector recursion277

technique essentially changes the basis in order to block tridi-278

agonalize the effective Hamiltonian. The basis is recursively279

generated,280

|1〉〉 =

⎛⎜⎝us(�ri,E) ⊗ {∅}
vs(�ri,E) ⊗ {∅}
ul(�ri,E) ⊗ {∅}
vl(�ri,E) ⊗ {∅}

⎞⎟⎠
B†

n+1|n + 1〉〉 = H̃ |n〉〉 − An|n〉〉 − B n|n − 1〉〉.

The coefficients An and B n are matrices and obtained from 281

the orthogonality of the generated basis and between rows 282

of the same basis. The configuration averaged diagonal matrix 283

element of the Green’s function then follows as a matrix 284

continued fraction, 285

〈〈G(�ri�ri ; E)〉〉 = 〈〈1|G|1〉〉 = G
0
(E),

Gn(E) = [zI − An − B†
n+1Gn+1(E)B n+1]−Pn−1,

n = 0,1,2, . . . N2 − 1,

where A−Pn denotes inverse in the subspace spanned by the 286

basis {|n + 1〉〉,|n + 2〉〉 . . .}. The matrix continued fraction is 287

terminated in two steps. The matrix coefficients {A
n
,B

n
} are 288

calculated exactly for n < N1, then: first, by putting An = AN1 289

and B n = B N1 for all N1 � n < N2 and second, GN2 (E) = 290

(E + iη)−1I . 291

The physical quantities of interest [Eq. (9)] relevant to the 292

study can be expressed as appropriate matrix elements of the 293

Green’s function, 294

〈nm〉 = − 1

π
lim
η→0

Im
∫ ∞

−∞
[G++

mm(i,i,E + iη)fn

+ G−−
mm(i,i,E + iη)(1 − fn)]dE,

�m = − 1

π
lim
η→0

Im
∫ +Ec

−Ec

[G+−
mm(i,i,E + iη)fn

+ G−+
mm(i,i,E + iη)(1 − fn)]dE,
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〈nmm′ 〉 = − 1

π
lim
η→0

Im
∫ ∞

−∞
[G++

mm′(i,i,E + iη)fn

+ G−−
mm′ (i,i,E + iη)(1 − fn)]dE,

�mm′ = − 1

π
lim
η→0

Im
∫ +Ec

−Ec

[G+−
mm′ (i,i,E + iη)fn

+ G−+
mm′ (i,i,E + iη)(1 − fn)]dE, (19)

where + and − refer to electron and hole spaces of the BdG295

formalism21 and the energy interval [−Ec, + Ec] is the short296

interval around the Fermi energy of the system where the297

interaction has its effect.298

III. RESULTS AND DISCUSSION299

A. Ordered systems300

In this section we shall present results on ordered two-band301

superconductors (both the bands having s-orbital character)302

on square and cubic lattices with both local intra- and303

interband Hubbard parameters. The system is kept fixed at304

half filling unless otherwise stated. Since these results are well305

known from other approaches, a comparison with them will306

ascertain the viability and numerical accuracy of our proposed307

methodology.308

For our model system the hopping integrals are chosen309

as follows: in Figs. 1(a)–1(d) the intraband nearest-neighbor310

hopping elements are ts = 1.0 and tl = 0.5 and the interband311

on-site hopping is tsl = 0.0.312

The s- and l-band partial densities of states (PDOS) for 313

the case when Us = Ul = Usl = 0 for the ordered system 314

are shown in Figs. 1(a) and 1(c) for the square and cubic 315

lattices, respectively. The two sets of PDOS exactly match 316

the standard calculations using Bloch’s theorem. One can 317

clearly see in Fig. 1(a) the band-center integrable Van Hove 318

singularity, the two flanking kink singularities, and the square- 319

root singularities at the band edges that are characteristic of 320

a square lattice. The cubic lattice PDOS [see Fig. 1(c)] is 321

characterized by constant DOS at the band center and terminate 322

in kink singularities on both sides. The s band with greater 323

intraband hopping integral is wider, as expected. 324

Next we investigate the situation in the presence of 325

intraband pairing, i.e., Hubbard parameter Us and Ul are only 326

finite. This corresponds to the system studied by Suhl et al.6 327

in the absence of interband tunneling of electrons. Thus Usl 328

in Eq. (1) is set to zero. In Figs. 1(b) and 1(d) we consider 329

the cases where Us = Ul = 4.0 and the system is kept fixed 330

at half filling. The BdG equations are solved recursively and 331

self-consistently as described earlier. After self-consistency 332

the superconducting order parameters �s and �l are found to 333

be nonzero. The s and l configuration averaged PDOS for the 334

system are calculated by using the relation 335

〈〈nm(E)〉〉 = − 1

π
lim
η→0

Im 〈〈G++
mm(1,1,E + iη)〉〉,

where m = s or l, η is an infinitesimal positive imaginary part 336

of the energy, and + refer to the electron states in the BdG 337

formalism. 338
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FIG. 1. (Color online) Study of superconductivity in an ordered square lattice [(a) and (b)] and cubic lattice [(c) and (d)] having two bands
s and l. (1) Intraband hopping integrals ts = 1.0 and tl = 0.5, and (2) Hubbard parameters for (a) and (c) are Us = Ul = Usl = 0.0 and for (b)
and (d) are Us = Ul = 4.0 and Usl = 0.
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The PDOS shown in Figs. 1(b) and 1(d) reveal that in339

spite of the parameters Us = Ul , the superconducting pairing340

amplitude �s and �l are different. This is due to the difference341

in bandwidth (W ) as ts �= tl , and the observation that the342

effective parameters Um/W (m = s or l) are responsible for343

the magnitude of the gap seen in the local DOS.344

In view of the above we have also investigated the situation345

only with intraband Hubbard parameters such that Us �= Ul .346

We have considered Us = 3.0 and Ul = 1.0. Since the effective347

parameter Us/W = 0.75 > Ul/W = 0.5 we did find �s >�l .348

The earlier study by Suhl et al.6 had also found two different349

band gaps arising in a two-band model system. Two different350

superconducting gaps were later realized in MgB2 .24–30
351

Next in addition to the intraband pairing we have also352

included interband pairing of electrons. In the presence of353

both inter- and intraband Hubbard parameters an interesting354

competitive effect sets in, as can be seen from Fig. 2(a).355

We keep the intraband attractive Hubbard parameter fixed356

(Us = Ul = 2.0), and vary the interband Hubbard parameter357

Usl . The intraband hopping integrals are chosen to be ts = 1.0358

and tl = 0.5 and interband on-site hopping integral is tsl = 0.2.359

We see [from Fig. 2(a)] when Us = Ul � Usl then it is the360

intraband pairing amplitude that is only finite and the interband361

pairing amplitude vanishes. On the other hand, when Us =362

Ul < Usl then it is only the interband pairing amplitude that is363

nonzero. Our calculations shows for momentum independent364

pairing in s-like bands depending on the strength of the365

attractive interaction, only a particular kind of pairing, either366

intraband or interband, is possible for two-band half filled367

systems when both bands have s-wave character.368

Finally, we examine the effect of the interband (on-site)369

hopping integral tsl on the pairing amplitude � for a half filled370

system. Figures 2(b) and 2(c) display the case for dominant371

intraband pairing (Us = Ul = 3.5 > Usl = 2.0) and dominant372

interband pairing (Us = Ul = 2.0 < Usl = 3.5), respectively.373

We find from the figures that inclusion of intraband on-site374

hopping term tsl does not change the qualitative picture for a375

two-band system except to reduce the magnitude of the gap.376

B. Homogeneously disordered systems377

We shall now study an attractive-U Hubbard model of a378

two-band, disordered, binary substitutional alloy on a square379

lattice. First we consider randomness in the on-site energy in380

one of the two channels, namely the l channel, and study its381

effect on the other channel. We introduce randomness in the382

on-site energy using Eq. (15) and our Hamiltonian takes the383

form given in Eq. (18). The concentrations are x = y = 0.5384

and the system is half filled throughout the study.385

To begin with, we study the systems in a situation similar386

to those under which we had investigated the corresponding387

ordered system. We keep ts = 1.0 and tl = 0.5 and the388

strength of disorder Dl = |εA
l − εB

l | = 1 throughout the cases389

considered in Fig. 3.390

First we study the case when the system is nonsupercon-391

ducting (Us = Ul = Usl = 0.0). From Fig. 3(a) we find due392

to the absence of hybridization between the s and l bands393

the s PDOS is not affected by randomness in the l channel.394

The l PDOS [Fig. 3(b)], however, has characteristic features of395

disordered DOS: namely increase in bandwidth and smoothing396
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FIG. 2. (Color online) Variation of � for a square lattice when
both intra- and interband interaction potentials are nonzero. Here
the intraband hopping integrals are ts = 1.0 and tl = 0.5 for the s
and l bands, respectively. In (a) the intraband pairing potentials |Us |
and |Ul | are kept fixed at 2.0 and Usl is varied. In (b) and (c) the
pairing potentials are kept fixed [(b) Us = Ul > Usl = 2.0 and (c)
Us = Ul < Usl = 3.5] and the effect of variation of interband on-site
hopping integral tsl is studied.

out of Van Hove singularities. The total DOS [Fig. 3(c)] 397

therefore carries the signatures of disorder as well. 398

Next, we investigate the DOS of the same system consider- 399

ing only the intraband Hubbard parameters to be nonzero, i.e., 400

Us = Ul = 4.0 and Usl = 0.0 [Figs. 3(d)–3(f)]. In this case 401

only the intraband pairing amplitudes �s and �l are nonzero 402

[see Eq. (3)]. We see that the s PDOS remains unaffected 403

by randomness in the l channel [comparing Fig. 3(d) with 404

Fig. 1(b)], disorder, however, influences the l PDOS [compar- 405

ing Fig. 3(e) with Fig. 1(b)]. Since both the s PDOS and l PDOS 406

are gapped, the total DOS remains gapped [Fig. 3(f)]. Similar 407

behavior also prevails with the inclusion of attractive interband 408
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FIG. 3. Study of a two-band superconducting system in a square lattice with disorder in the l channel with strength of disorder D = 1.0.
While (a)–(c) study the s, l PDOS and total DOS, respectively, for the nonsuperconducting case (where intra- and interband Hubbard potential
Us = Ul = Usl = 0.0), (d)–(f) study the effect of disorder on the corresponding superconducting system with only intraband interaction.

interaction Usl , provided the intraband pairing dominates, i.e.,409

Usl < Ul and Us .410

The variation of the zero-temperature superconducting411

order parameters �s , �l , and �sl are plotted as a function of412

the strength of disorder in Fig. 4(a) where Us = Ul = 2.0 >413

Usl = 1.0. As expected for momentum independent pairing414

only the intraband pairings are finite. �s does not change as a415

function of disorder strength as it does not register the effect416

of the disorder in the l channel. As the strength of disorder417

(D) is increased �l reduces but remains finite even for D = 3.418

Therefore in the chosen parameter regime for the two-band419

system the situation is similar to that predicted by Anderson420

theorem11 for the single-band system, where the gap survives421

in the quasiparticle spectrum even in the presence of disorder.422

Suhl et al.6 using a generalized BCS Hamiltonian for the 423

two-band superconductor proposed a generalized expression 424

for critical temperature Tc and temperature-dependent pairing 425

amplitude. As stated earlier, our two-band Hubbard Hamilto- 426

nian without the interband pairing term is identical to that of 427

Suhl et al. The expression for Tc for the s and l bands (T s
c and 428

T l
c , respectively) can be generalized to 429

1 = |Um|
∫ ∞

−∞
dE

〈〈Nm(E)〉〉
2E

tanh

(
E

2kBT m
c

)
, (20)

where m = s or l, while 〈〈Ns(E)〉〉 and 〈〈Nl(E)〉〉 are the 430

s- and l-band configuration averaged density of states in the 431

normal state at energy E. Setting Us = Ul = 3.5, Usl = 0 and 432
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FIG. 4. (Color online) (a) Variation of � as a function of disorder
strength (D) in the l band when Us = Ul > Usl . (b) Variations of
s-band and l-band critical temperatures T s

c and T l
c as a function of

disorder strength D when only intraband pairing occurs in a two-band
s-wave superconductor in a square lattice. (c) Variation of �s(T ) and
�l(T ) with T for various strengths of disorder D in the l band.

x = y = 0.5 and keeping the system fixed at half filling, we433

obtain the corresponding T s
c and T l

c for different values of D434

[see Fig. 4(b)]. As seen from this figure, T s
c remains constant435

with increasing disorder strength D since randomness in the436

l band does not affect the s band in the presence of intraband437

pairing alone. T l
c is, however, suppressed with increasing D. At438

this point, however, it must be noted that only the higher of the439

two critical temperatures (T s
c and T l

c ) is physically significant440

in this respect. So in the present case, Tc first decreases with441

disorder and then becomes constant when T s
c > T l

c .442

These conclusions are further strengthened by a study of443

the pairing amplitude as a function of temperature, and the444

expressions for the temperature-dependent pairing amplitudes 445

are 446

1 = |Um|
∫ ∞

−∞
dE

〈〈Nm(E)〉〉
2
(
E2 + �2

m

)1/2 tanh

((
E2 + �2

m

)1/2

2kBT

)

for the m = s or l bands. 447

We see that with the increase in disorder strength D in 448

the l band the temperature-dependent pairing amplitude �l 449

reduces much like the zero-temperature pairing amplitude [see 450

Fig. 4(c)]. Since randomness in the l channel does not affect 451

the s band thus �s(T ) is not affected by D so we have plotted 452

�s(T ) vs T only at D = 0 [see Fig. 4(c)]. We conclude from 453

Figs. 4(b) and 4(c) that for temperatures below the critical 454

temperatures though disorder (D) suppresses �(T ), but does 455

not reduce it to zero. 456
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FIG. 5. (Color online) (a) Variation of � with disorder strength
(D) in the l band when Us = Ul < Usl . (b),(c) Studies DOS for a
square-lattice superconducting system with disorder in the l band
when Us = Ul < Usl .
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FIG. 6. (Color online) A study of � as a function of disorder
strength (D) in the s and l band for (a) Us = Ul > Usl and (b) Us =
Ul < Usl for a two-dimensional (2D) superconducting system having
two bands. Here the intraband hopping integrals ts = 1.0 and tl = 0.5
and the interband hopping integral tsl = 0.0.

The next set of studies is the investigation of the increasing457

strength of the disorder D on a two-band attractive-U Hubbard458

model with dominant interband attractive interaction Usl >459

Us,Ul . In the parameter regime Us = Ul = 1.0 < Usl the460

dominant pairing is the interband pairing Usl and it affects both461

the bands. In contrast to the case of only intraband pairing,462

here for a critical strength of disorder D > 2 the pairing463

amplitude �sl vanishes indicating the possible disappearance464

of superconductivity [see Fig. 5(a)]. This is further illustrated465

in the DOS plot for the s and l channels in Figs. 5(b) and 5(c),466

respectively. Here the presence of randomness in the l channel467

affects �sl and this in turn affects both s and l PDOS. With468

increasing disorder D in the l channel the gaps both in the s469

PDOS and l PDOS reduces. Eventually finite DOS at the Fermi470

level is realized indicating the absence of superconductivity.471

Finally we address the situation when disorder is introduced472

in both s and l channels. When the interaction is such that473

Us = Ul > Usl [Fig. 6(a)], then only �s and �l are nonzero474

even for strength of disorder as large as D = 2.5 indicating475

the presence of superconductivity. However, in the limit476

Usl > Us = Ul [Fig. 6(b)], we see that �sl decreases rapidly477

with disorder and finally vanishes. These features are very478

similar to the case when disorder was introduced in only one479

channel.480

C. Summary 481

In this paper we have developed a real-space approach to 482

study the effect of disorder on multiband superconductivity 483

using a two-band Hubbard Hamiltonian to model our system 484

and augmented space vector-recursion22,23 method to treat 485

randomness in our system. We have established the accuracy 486

of our method by comparing our results in ordered systems 487

with those obtained earlier using other techniques. For ordered 488

systems we have seen gaps in both bands in the presence 489

of intraband pairing. In the presence of both intraband and 490

interband momentum independent pairing, depending on the 491

relative magnitude of the pairing strength, only a particular 492

kind of pairing is possible for a half filled s-like two-band 493

system. 494

We have then studied the effect of randomness in one of 495

the bands. When only intraband pairing occurs, randomness 496

in one channel does not affect the other. But in the presence of 497

interband pairing both the bands are affected by randomness. 498

By increasing the strength of disorder, superconductivity 499

survives in the presence of intraband pairing although the 500

pairing amplitudes decrease with disorder. However, for 501

interband pairing the gap in the quasiparticle spectrum ceases 502

to exist beyond a critical value of the disorder strength. In 503

the case of interband pairing, where the Cooper pairs are 504

formed by electrons belonging to two different bands, we 505

speculate that phase coherence of the superconducting state 506

is more sensitive to disorder. The lack of phase coherence 507

due to disorder is probably responsible for the disappearance 508

of superconductivity. The same conclusion holds good when 509

disorder is introduced in both the bands. Our calculation 510

indicates that interband pairing in multiband systems is not 511

only interesting but opens up a paradigm beyond Ander- 512

son’s theorem11 to understand superconductivity in disordered 513

systems. 514
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