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We present a vector recursion based approach to study the effect of disorder on superconductivity in
a system modeled by two-band attractive Hubbard Model. We use the augmented space formalism
for the disorder averaging. In the presence of only intraband pairing in a two band disordered
system with disorder in either or both bands, our calculations reveal that the gap survives in the
quasiparticle spectrum; similar to single band systems. However for interband pairing the gap in
the quasiparticle spectrum ceases to exist beyond a critical value of the disorder strength. In the
presence of both interband and intraband pairing interaction, depending on the relative magnitude
of the pairing strength, only a particular kind of pairing is possible for a half-filled two band system.
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I. INTRODUCTION

The study of superconductivity in multi-band systems
has received considerable interest recently because of the
discovery of superconducting materials where the Fermi
surface is dominated by several bands. Examples in-
clude MgB2 where the Fermi surface is determined by
the σ and π bands arising from the B-p orbitals. It is
now confirmed that the superconductivity in this mate-
rial can be explained with the Bardeen-Cooper-Schrieffer
(BCS) theory with two different superconducting gaps in
agreement with experiments1. A description of unusual
p−wave superconductivity in Sr2RuO4 also necessitates
a multi-band model for superconductivity2,3. Very re-
cently the discovery of superconductivity in Fe pnictides,
whose Fermi surface is built out of the t2g orbitals of
Fe, has again emphasized the importance of the study of
superconductivity in multi-band systems4,5.

The complex problem of superconductivity in multi-
band systems was first studied by Suhl et al.

6 using a
tight-binding model Hamiltonian with two bands. The
model included intra-band pairing and also the inter-
band hopping of pairs of electrons belonging to the same
band. They showed that pairing could occur in each band
and, because electron-phonon interactions may have dif-
ferent strengths in different bands, this can give rise to
two different superconducting gaps. But in the special
case of only inter-band scattering, a single gap was found
to be present in the density of states unless the band dis-
persion of the two bands had different shapes7. A sim-
ilar model was also investigated by Machida et al.

8 for

the study of superconductivity in multi-band systems.
Recently Moreo et al.

9 revisited the theory of supercon-
ductivity in multi-band systems in the context of Fe pnic-
tides. In particular they have emphasized the importance
of inter-band pairing in multi-band systems in which, in
contrast to earlier studies6,8, Cooper pairs are formed by
electrons belonging to two different bands. The calcula-
tions by Moreo et al.

9 revealed that three different regions
can result from a purely inter-band pairing as a func-
tion of the interaction parameter: (i) a normal regime
where the ground state is not superconducting ; (ii) an
exotic superconducting “breached” regime where one of
the bands is gapped at the Fermi level while the other
is not, and (iii) a superconducting regime resembling the
BCS states, at large attractive coupling. The existence of
an exotic superconducting “breached” regime with both
gapped and gapless quasiparticle excitations was also dis-
cussed by Liu and Wilczek10 in the context of cold atoms
and quantum chromodynamic systems.

The preceding discussion suggests that superconduc-
tivity in multi-band systems is not only interesting but
markedly different from its single-band counterpart. In
this context it will also be important to understand the
role of disorder in multi-band superconducting systems
since disorder is an important factor that has a profound
impact on superconductivity. While the effect of dis-
order on superconductivity in single-band systems have
been actively investigated, there are very few systematic
studies of the role of disorder in multi-band systems.

The effect of disorder in single-band systems is usually
discussed within the framework of Anderson’s theorem11.
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For s-wave superconductors Anderson’s theorem guaran-
tees the survival of an absolute gap in the quasi-particle
spectrum of the system provided the perturbation due
to disorder preserves time reversal invariance and the co-
herence length is long enough to ensure that the pair-
ing amplitude ∆ does not fluctuate. There exists a
body of work where the Bogoliubov-de Gennes (BdG)
equations12 which provide a natural framework for a
fully microscopic description of the phenomena of super-
conductivity have been solved in conjunction with the
mean-field single-site coherent potential approximation
(CPA)13–15, in order to understand the physics of super-
conductivity in single-band disordered systems.

Recently we have proposed an efficient real-space
scheme to solve the BdG equations for single-band dis-
ordered attractive Hubbard models16. The aim of this
paper is to propose a real space, vector recursion based
approach to study the effect of disorder on a multi-band
attractive-U Hubbard model where the configuration av-
eraging, as in our earlier study, will be based on the aug-
mented space recursion (ASR) formalism introduced by
one of us17. The ASR gives us the flexibility of introduc-
ing the effects of random configuration fluctuations in the
local environment of a site. It does not violate analyti-
cal properties of the configuration-averaged Green’s func-
tion, which form an essential ingredient of the solution.
It can deal easily with the effect of either off-diagonal dis-

order or inhomogeneous disorder such as clustering, seg-
regation, and short-ranged ordering which usually occur
intrinsically in most disordered materials due to different
chemical affinities of the constituents.

We shall begin by studying superconductivity in an
ordered two-band, tight-binding, attractive-U Hubbard
model, using our vector recursion technique. Then, hav-
ing satisfied ourselves with the reliability of our method-
ology, we shall proceed to study the effect of disorder on
the same model. The rest of the paper is organized as fol-
lows : in Section II we shall discuss our method in some
detail. Section III will be devoted to results and dis-
cussions for multi-band ordered and disordered systems.
Finally in Section IV we will summarize our study.

II. METHODOLOGY

A. The multi-band attractive-U Hubbard model

To study the effect of disorder on a multi-band s-wave
superconducting system we shall begin with the simplest
model, namely, the two band attractive Hubbard Hamil-
tonian in model lattices. The Hamiltonian is given by :

H = −
∑

〈i,j〉

∑

m,m′,σ

tim,jm′ c†imσcjm′σ +
∑

i,m,σ

(εim − µ)nimσ −
∑

i,m

|Umm(i)|nim↑nim↓ −
∑

i

∑

m,m′,σ,σ
′

|Umm′(i)|nimσnim′σ
′

(1)

Here m , m′ are the band index. This Hamiltonian is a
generalization of the single-band Hubbard Hamiltonian
and similar to earlier studies by Annett et al.

3,18. Our
model Hamiltonian allows for both intra-band as well as
inter-band pairing. The inter-band pairing term is sim-
ilar to that of Annett et al.

3,18 and Moreo et al.
9 which

allows Cooper pairs to be formed by electrons belong-
ing to two different bands. The earlier studies by Suhl
et al.

6 and Machida et al.
8 did not consider the pairing

of electrons belonging to two different bands but a pair
tunneling term given by :

−
∑

i

∑

m,m′,σ,σ
′

|U t
mm′(i)|(cimσcimσ′)†cim′σcim′σ′ (2)

This term allowed for the tunneling of the Cooper pairs
from one band to the other with a tunneling strength
given by U t

mm′ .

In Eqn. (1) {c†imσ}, {cimσ} are the usual electron cre-
ation and annihilation operators for orbital m with spin

σ on site labelled i of a square or cubic lattice. The index
m runs over the two bands labeled s and l, µ is the chem-
ical potential and εim the local on-site energy at the site
labelled i in the band m. The hopping integral tim,jm′

has four components:: tis,js = ts is the hopping integral
in the s-band from a site i to one of its nearest neighbours
j and til,jl = tl is that in the l-band from a site to one
of its nearest neighbours. The inter-band hopping inte-
grals are tis,il = tsl which is the hopping integral from a
site in the s-band to the same site in the l-band (or vice-
versa) and tis,jl = tnn

sl which is the hopping integral from
a site i in the s-band to one of its nearest neighbours j
in the l-band (or vice-versa). In this work we have not
included the inter-band inter-site hopping integral tnn

sl .
However, we do consider the effect of on-site inter-band
hopping integrals tsl in some of our analysis. As we will
see subsequently, tsl will not alter the qualitative features
of our results. In this model, Uss=−|Us| corresponds to
a local Hubbard parameter leading to a pairing interac-
tion potential for s-band electrons and Ull=−|Ul| corre-
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spond to a local Hubbard parameter for l-band electrons.
Here, both the attractive interactions give rise to s-wave
pairing since they are local. The inter-band pairing in-
teraction Umm′=−|Usl| is the local attractive potential
between electrons in the s- and l- band.

The BdG mean field decomposition12 of the interaction
terms give expectation values to the intra and inter band
pairing amplitudes:

∆m = −|Um| 〈cim↓cim↑〉 ; ∆sl = −|Usl| 〈cil↓cis↑〉 (3)

and also to the intra and inter band “densities”:

〈nimσ〉 = 〈cimσc†imσ〉 ; 〈nislσ〉 = 〈cilσc†isσ〉 (4)

The effective quadratic BdG Hamiltonian becomes :

Heff = −
∑

〈i,j〉

∑

m,m′,σ

tim,jm′ c†imσcjm′σ +
∑

imσ

(εim − µ̂im) nimσ −
∑

im,m′,σ

|Umm′ | 〈nimm′σ〉
2

c†imσcjm′σ

+
∑

im

(
∆mc†im↑c

†
im↓ − ∆∗

mcim↑cim↓

)
+

∑

i,m,m′

(
∆mm′c†im↑c

†
im′↓ − ∆∗

mm′cim↑cim′↓

)

(5)

where µ̂im = µ− |Umm|〈nim〉/2 incorporates the site de-
pendent Hartree shift.

This effective Hamiltonian can be diagonalized by using
the Hartree-Fock-Bogoliubov (HFB)19 transformation:

cim↑ =
∑

n

[βn↑um(ri, E) − β†
n↓v

∗
m(ri, E)]

cim↓ =
∑

n

[βn↓um(ri, E) + β†
n↑v

∗
m(ri, E)] (6)

where β and β† are quasi-particle operators , and
um(ri, E), vm(ri, E) are the quasi-particle amplitudes as-
sociated with an eigen energy En.

In the Hartree-Fock mean-field approximation incor-
porating charge-order and superconducting decoupling
along with the above canonical transformation we have,




Hss ∆s −Nsl ∆sl

∆∗
s −Hss ∆∗

sl Nsl

−Nls ∆ls Hll ∆l

∆∗
ls −Nls ∆∗

l −Hll







us(ri, E)
vs(ri, E)
ul(ri, E)
vl(ri, E)


 = E




us(ri, E)
vs(ri, E)
ul(ri, E)
vl(ri, E)


 (7)

where (the excitation eigen-value E ≥ 0)

Hmmum(ri, E) = (εim − µ̂im) um(ri, E) −
∑

j

tmum(rj , E)

Nmm′um′(ri, E) =

{
1

2
|Umm′ |〈nmm′〉 + tmm′

}
um′(ri, E) +

∑

j

tnn
mm′um′(rj , E) (8)

Here j is the nearest neighbour of i. We can express the particle densities and the pairing amplitudes in terms of the
quasi-particle amplitude as
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〈nim〉 = 2

∫
dE|um(ri, E)|2f(E) + |vm(ri, E)|2[1 − f(E)]

〈nimm′〉 = 2

∫
dEum′(ri, E)u∗

m(ri, E)f(E) + v∗
m′(ri, E)vm(ri, E)[1 − f(E)]

∆m = |Um|
∫

dEv∗
m(ri, E)um(ri, E)f(E) − um(ri, E)v∗

m(ri, E)[1 − f(E)]

∆mm′ = |Umm′ |
∫

dEv∗
m(ri, E)um′(ri, E)f(E) − um(ri, E)v∗

m′(ri, E)[1 − f(E)] (9)

where f(E) is the Fermi function. A fully self-consistent
solution of (7) can be obtained provided all the normal
potentials (|Um|nim and |Umm′ |nimm′) and anomalous
potentials (∆im and ∆imm′) are determined self consis-
tently from Eqn. (9). The self-consistency criteria is set
to 10−6 for calculation of all self-consistent parameters
throughout the present study.

B. Treatment of disorder : augmented space

formalism

The class of systems which we shall study here will be
binary substitutionally disordered alloys. We shall study
randomness in the diagonal site-energies, either in one
of the two bands, say the l-band ({εil}); or in both the
bands ({εis} and {εil}). We shall introduce site occupa-
tion variables {ni} (this should not be confused with the
number operator nimσ) which take values 1 or 0 accord-
ing to whether the site labelled i is occupied by a A-type
or a B-type of atom.

εim = εA
m ni + εB

m (1 − ni) = εB
m + δεmni (10)

where, m = s or l and εA
s , εB

s and εA
l , εB

l are the pos-
sible on-site energies corresponding to the s and l band
respectively. We define the strength of disorder in the
band labeled m by Dm = |δεm| = |εA

m − εB
m|.

If the concentrations of A and B-type of atoms in the
solid are x and y, then the probability density of ni, in
the absence of short range order, is given by :

p(ni) = xδ(ni − 1) + yδ(ni) (11)

The ‘configuration space’ of ni, Φi, has rank 2 and is
spanned by the states |Ai〉 and |Bi〉 in which the param-
eter εim take the values εA

m and εB
m respectively.

The augmented space formalism associates with each

random variable ni an operator Ñi acting on its configu-
ration space Φi and whose spectral density is its proba-
bility density. That is :

p(ni) = − 1

π
lim
δ→0

ℑm 〈∅i|[(ni + iδ)Ĩ − Ñi]
−1|∅i〉 (12)

where |∅i〉 =
√

x|Ai〉 +
√

y|Bi〉 is the so called ‘refer-
ence’ state. This nomenclature arises from the fact that
the augmented space theorem20 states that the matrix
element in this state is the configuration average. The
other basis member is |1i〉 =

√
y|Ai〉−

√
x|Bi〉 which is a

state with one ‘fluctuation’ about the reference state at
the site i. Alternatively, it is denoted by |{i}〉 where {i}
is the ‘cardinality sequence’ of sites at which there are
fluctuations. The configuration states |Ai〉 and |Bi〉 are

the eigenkets of Ñi corresponding to eigenvalues 1 and

0. The representation of the operator Ñi in the basis
{|∅i〉, |ii〉} is

Ñi = xP∅i
+ yP1i

+
√

xy
[
T∅i,1i

+ T1i,∅i

]

= xI + (y − x)P1i
+
√

xy
[
T∅i,1i

+ T1i,∅i

]
(13)

Here, I is the identity operator, PX are the projec-
tion operators |X〉〈X| and TXY are the transfer operators
|X〉〈Y | and X,Y are either ∅i or 1i.

Let us define a configuration fluctuation creation op-

erator at the site labeled i as : γ†
i |∅i〉 = |1i〉. Since each

site can either be ∅ or 1, this is a fermion-like creation

operator with γ†
i |1i〉 = 0. Similarly we define a configu-

ration fluctuation annihilation operator γi|1i〉 = |∅i〉 and

γi|∅i〉 = 0. In terms of these operators P1i
= γ†

i γi counts
the number of configuration fluctuations at the site i,
and of the transfer operators : T∅i,1i

= γi annihilates

and T1i,∅i
= γ†

i creates a configuration fluctuation at the
site i.

The operator Ñi in this new representation is :

Ñi = xI + (y − x) γ†
i γi +

√
xy

(
γ†

i + γi

)
(14)

So,

εim = εB
m + δεm ni has associated with it an operator,

ε̃im = 〈εm〉I + (y − x)δεm γ†
i γi +

√
xy δεm

(
γ†

i + γi

)

(15)

obtained by replacing ni with its operator form Ñi (see
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eqn14 ) where, 〈ǫm〉 refers to the average :

〈ǫm〉 = xǫA
m + yǫB

m (16)

with m = s or l, δεs = εA
s − εB

s and Ds = |δεs|, δεl =
εA
l − εB

l and Dl = |δεl|.
The augmented space theorem20 states that the con-

figuration average of a function of a set of independent
random variables : A({ni}) can be expressed as a matrix
element in the full configuration space of the disordered
system Φ =

∏⊗
Φi ,

≪ A({ni}) ≫= 〈{∅}|Ã({Ñi})|{∅}〉 (17)

where |{∅}〉 =
∏⊗

i |∅i〉 and Ã({Ñi}) is the represen-

tation of the operator Ã in the configuration space Φ,
constructed by replacing all random variables ni by their

corresponding operators Ñi. A compact way of repre-
senting a basis in configuration space is to denote it by
the set of sites where we have a configuration fluctuation.
This set is called the cardinality set and the meaning
of the empty cardinality set {∅} then becomes obvious.
For the present system the Hamiltonian contains the ran-
dom variables {εis} and{εil}. So we need to construct the

Hamiltonian in the augmented space Ψ = H⊗∏⊗
i Φi by

replacing all the random variables εis and εil by the cor-
responding operators shown in Eqn. (15). The effective
augmented space Hamiltonian becomes :

H̃eff = −
∑

〈i,j〉,m,m′,σ

tim,jm′ c†imσcjm′σ ⊗ I +
∑

imσ

(〈εm〉 − µ̂im)nimσ ⊗ I +
∑

imσ

δεm nimσ ⊗
{

(y − x)γ†
i γi +

√
xy(γ†

i + γi)
}

. . .

−
∑

im,m′,σ

|Umm′ | 〈nimm′σ〉
2

c†imσcjm′σ ⊗ I +
∑

im

(
∆mc†im↑c

†
im↓ − ∆∗

mcim↑cim↓

)
⊗ I . . .

+
∑

i,m,m′

(
∆mm′c†im↑c

†
im′↓ − ∆∗

mm′cim↑cim′↓

)
⊗ I (18)

In the special case when there is randomness in just
one of the bands (say l), in the Eqn.(18) we put δεs = 0
and 〈εs〉 = εs.

After constructing the Hamiltonian in augmented
space the augmented space theorem then automatically
ensures that the configuration average is a projection
onto the state with no ‘fluctuations’20 :

≪ G(i, i, E) ≫= 〈∅|G̃(i, i, E)|∅〉

where G̃ = (EĨ− H̃
eff

)−1. All operators here are 4×4

matrices(here double underbar indicates 4 × 4 matrices)
in the space spanned by the two bands and the electron-
hole degrees of freedom21 arising in BdG formalism.

The Green functions are obtained using the vector re-
cursion technique introduced by Haydock and Godin22,23.
The vector recursion has been described in great detail in
the given references and in our earlier work16. We shall
indicate the main points and the interested reader may
refer to the quoted references for details. Once the BdG
Hamiltonian is set up as in Eqn.(7) and the effective aug-
mented space transformation carried out as in Eqn.(18),
the vector recursion technique essentially changes the ba-
sis in order to block tridiagonalize the effective Hamilto-
nian. The basis is recursively generated :

|1 ≫ =




us(~ri, E) ⊗ {∅}
vs(~ri, E) ⊗ {∅}
ul(~ri, E) ⊗ {∅}
vl(~ri, E) ⊗ {∅}




The coefficients An and B n are matrices and obtained
from the orthogonality of the generated basis and be-
tween rows of the same basis The configuration averaged
diagonal matrix element of the Green function then fol-
lows as a matrix continued fraction :

≪ G(~ri~ri;E) ≫=≪ 1|G|1 ≫= G
0
(E)

Gn(E) =
(
zI − An − B†

n+1Gn+1(E)B n+1

)−Pn−1

n = 0, 1, 2, . . . N2 − 1

where A−Pn denotes inverse in the subspace spanned by
the basis {|n + 1 ≫, |n + 2 ≫ . . .}. The matrix con-
tinued fraction is terminated in two steps. The matrix
coefficients {A

n
, B

n
} are calculated exactly for n < N1,

then : first, by putting An = AN1
and B n = B N1

for all

N1 ≤ n < N2 and second, GN2
(E) = (E + iη)

−1
I



6

The physical quantities of interest (Eqn.(9)) relevant to the study can be expressed as appropriate matrix elements
of the Green’s function.

〈nm〉 = − 1

π
lim
η→0

Im

∫ ∞

−∞

[
G

++
mm(i, i, E + iη)fn + G

−−
mm(i, i, E + iη)(1 − fn)

]
dE

∆m = − 1

π
lim
η→0

Im

∫ +Ec

−Ec

[
G

+−
mm(i, i, E + iη)fn + G

−+
mm(i, i, E + iη)(1 − fn)

]
dE

〈nmm′〉 = − 1

π
lim
η→0

Im

∫ ∞

−∞

[
G

++
mm′(i, i, E + iη)fn + G

−−
mm′(i, i, E + iη)(1 − fn)

]
dE

∆mm′ = − 1

π
lim
η→0

Im

∫ +Ec

−Ec

[
G

+−
mm′(i, i, E + iη)fn + G

−+
mm′(i, i, E + iη)(1 − fn)

]
dE (19)

Where + and - refer to electron and hole spaces of the
BdG formalism21 and the energy interval [−Ec,+Ec] is
the short interval around the Fermi-energy of the system
where the interaction has its effect.

III. RESULTS AND DISCUSSION.

A. Ordered Systems.

In this section we shall present results on ordered two
band superconductors (both the bands having s-orbital
character) on square and cubic lattices with both local
intra and inter-band Hubbard parameters. The system
is kept fixed at half-filling unless otherwise stated. Since
these results are well known from other approaches, a
comparison with them will ascertain the viability and
numerical accuracy of our proposed methodology.

For our model system the hopping integrals are cho-
sen as follows : in Figs.1 (a)-(d) the intra-band nearest
neighbour hopping elements are ts=1.0 and tl=0.5 and
the inter-band on-site hopping tsl=0.0.

The s- and l-band partial densities of states (PDOS)
for the case when Us = Ul = Usl = 0 for the ordered
system are shown in Fig.1 (a) and (c) for the square and
cubic lattices respectively. The two sets of PDOS exactly
match the standard calculations using Bloch’s theorem.
One can clearly see in Fig.1 (a) the band-center integrable
Van Hove singularity, the two flanking kink singularities
and the square-root singularities at the band edges that
are characteristic of a square lattice. The cubic lattice
PDOS [see Fig.1 (c)] is characterized by constant DOS
at the band center and terminate in kink singularities on
both sides. The s-band with greater intra-band hopping
integral is wider, as expected.

Next we investigate the situation in the presence of
intra-band pairing, ie. Hubbard parameter Us and Ul

are only finite. This corresponds to the system studied
by Suhl et. al.

6 in the absence of inter-band tunneling of
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FIG. 1: (Color online) Study of superconductivity in an or-
dered square lattice [(a) and (b)] and cubic lattice [(c) and
(d)] having two bands s and l.
(1) Intra-band hopping integrals : ts=1.0 and tl=0.5 and (2)
Hubbard parameters for (a) and (c) are : Us=Ul=Usl=0.0
and for (b) and (d) are : Us=Ul=4.0 and Usl=0.

electrons. Thus, Usl in Eqn.(1) is set to zero. In Fig.1 (b)
and (d) we consider the cases where Us=Ul = 4.0 and the
system is kept fixed at half filling. The BdG equations
are solved recursively and self-consistently as described
earlier. After self-consistency the superconducting order
parameter ∆s and ∆l are found to be non-zero. The s
and l configuration averaged PDOS for the system are
calculated by using the relation

≪ nm(E) ≫= − 1

π
lim
η→0

ℑm ≪ G++
mm(1, 1, E + iη) ≫

where, m = s or l, η is an infinitesimal positive imaginary
part of the energy and + refer to the electron states in
the BdG formalism.

The PDOS shown in Fig1(b) and 1(d) reveal that in-
spite of the parameters Us=Ul, the superconducting pair-
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ing amplitude ∆s and ∆l are different. This is due to the
difference in band width (W ) as ts 6= tl, and the obser-
vation that the effective parameters Um/W (m = s or l)
are responsible for the magnitude of the gap seen in the
local DOS.

In view of the above we have also investigated the sit-
uation only with intra-band Hubbard parameters such
that Us 6= Ul. We have considered Us = 3.0 and Ul = 1.0.
Since the effective parameter Us/W=0.75 > Ul/W=0.5
we did find ∆s > ∆l. The earlier study by Suhl et. al.

6

had also found two different band gaps arising in a two
band model system. Two different superconducting gap
was later realized in MgB2

24–30.

Next in addition to the intraband pairing we have also
included interband pairing of electrons. In the presence
of both inter and intra-band Hubbard parameters an in-
teresting competitive effect sets in as can be seen from
Fig.2(a). We keep the intra-band attractive Hubbard
parameter fixed (Us=Ul=2.0), and vary the inter-band
Hubbard parameter Usl. The intra-band hopping in-
tegrals are choosen to be ts=1.0 and tl=0.5 and inter-
band on-site hopping integral is tsl=0.2. We see (from
Fig.2(a)) when Us=Ul ≥ Usl then it is the intra-band
pairing amplitude that is only finite and the inter-band
pairing amplitude vanishes. On the other hand, when
Us=Ul < Usl then it is only the inter-band pairing am-
plitude that is non-zero. Our calculations shows for mo-
mentum independent pairing in s-like bands depending
on the strength of the attractive interaction, only a par-
ticular kind of pairing either intra-band or inter-band is
possible for two band half-filled systems when both the
bands have s-wave character.

Finally, we examine the effect of the inter-band (on-
site) hopping integral tsl on the pairing amplitude ∆ for
a half-filled system. Fig.(2)(b) and Fig.(2)(c) displays
the case for dominant intraband pairing (Us=Ul=3.5 >
Usl=2.0) and dominant interband pairing (Us=Ul=2.0 <
Usl=3.5) respectively. We find from the figures that in-
clusion of intra-band on-site hopping term tsl does not
change the qualitative picture for a two band system ex-
cept to reduce the magnitude of the gap.

B. Homogeneously disordered systems.

We shall now study an attractive-U Hubbard model
of a two-band, disordered, binary substitutional alloy on
a square lattice. First we consider randomness in the
on-site energy in one of the two channels, namely the l-
channel, and study its effect on the other channel. We
introduce randomness in the on-site energy using Eqn.
(15) and our Hamiltonian takes the form given in Eqn.
(18). The concentrations are x = y = 0.5 and the system
is half-filled throughout the study.

To begin with, we study the systems in a situation sim-

0 1 2 3 4
Usl

0

0.5

1

1.5

2

2.5

∆

∆
∆
∆

s(a)

Us = Ul = 2.0

l
sl

0 0.2 0.4 0.6 0.8
tsl

1

1.2

1.4

1.6

1.8

∆

∆
∆

s

l

(b)

Us=Ul=3.5 ; Usl=2.0

0 0.2 0.4 0.6 0.8
tsl

0.5

1

1.5

2

∆

∆slUs=Ul=2.0 ; Usl=3.5

(c)

FIG. 2: (Color online) Variation of ∆ for a square lattice
when both intra and inter-band interaction potentials are non-
zero. Here the intra-band hopping integrals are ts=1.0 and
tl=0.5 for the s and l-bands respectively. In (a) the intra-band
pairing potentials |Us| and |Ul| are kept fixed at 2.0 and Usl

is varied. In (b) and (c) the pairing potentials are kept fixed
[(b) Us = Ul > Usl=2.0 and (c) Us = Ul < Usl=3.5] and the
effect of variation of inter-band on-site hopping integral tsl is
studied.

ilar to those under which we had investigated the corre-
sponding ordered system. We keep ts = 1.0 and tl = 0.5
and the strength of disorder Dl = |εA

l −εB
l | = 1 through-

out the cases considered in Fig.3.

First we study the case when the system is non-
superconducting (Us = Ul = Usl = 0.0). From Fig.3(a)
we find due to the absence of hybridization between the
s and l bands the s PDOS is not affected by random-
ness in the l-channel. The l PDOS (Fig.3(b)), however,
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FIG. 3: Study of a two-band superconducting system
in a square lattice with disorder in the l-channel with
strength of disorder D=1.0. While (a),(b) and (c) studies
the s, l PDOS and Total DOS respectively for the non-
superconducting case (where intra and inter-band Hubbard
potential Us=Ul=Usl=0.0) (d), (e) and (f) studies the effect
of disorder on the corresponding superconducting system with
only intra-band interaction.

has characteristic features of disordered DOS : namely
increase in band-width and smoothing out of Van Hove
singularities. The total DOS (Fig.3(c)), therefore, carries
the signatures of disorder as well.

Next, we investigate the DOS of the same system con-
sidering only the intra-band Hubbard parameters to be
non-zero i.e., Us = Ul = 4.0 and Usl = 0.0 (Fig.3(d),(e)
and (f)). In this case only the intra-band pairing am-
plitudes ∆s and ∆l are non-zero (see Eqn(3)). We see
that the s PDOS remains unaffected by randomness in
the l-channel (comparing Fig.3(d) with Fig.1(b)), disor-
der however influences the l PDOS (comparing Fig.3(e)
with Fig.1(b)). Since both the s PDOS and l PDOS are
gapped, the total DOS remains gapped (Fig.3(f)). Simi-
lar behaviour also prevails with the inclusion of attractive
inter-band interaction Usl, provided the intraband pair-
ing dominates ie. Usl < Ul and Us.

The variation of the zero temperature superconduct-
ing order parameters ∆s, ∆l and ∆sl are plotted as a
function of the strength of disorder in Fig.4(a) where
Us=Ul=2.0 > Usl=1.0. As expected for momentum inde-
pendent pairing only the intra-band pairings are finite.

∆s does not change as a function of disorder strength
as it does not register the effect of the disorder in the
l-channel. As the strength of disorder (D) is increased
∆l reduces but remains finite even for D=3. Therefore
in the chosen parameter regime for the two band system
the situation is similar to that predicted by Anderson
theorem11 for single-band system, where the gap survives
in the quasi-particle spectrum even in the presence of dis-
order.

Suhl et al.
6 using a generalized BCS Hamiltonian for

the two band superconductor proposed a generalized ex-
pression for critical temperature Tc and temperature de-
pendent pairing amplitude. As stated earlier, our two-
band Hubbard Hamiltonian without the inter-band pair-
ing term is identical to that of Suhl et al.. The expression
for Tc for the s- and l-bands (T s

c and T l
c respectively) can

be generalized to:

1 = |Um|
∫ ∞

−∞

dE
≪ Nm(E) ≫

2E
tanh

(
E

2kBTm
c

)
(20)

where, m = s or l, while ≪ Ns(E) ≫ and ≪ Nl(E) ≫
are the s and l-band configuration averaged density of
states in the normal state at energy E. Setting Us =
Ul = 3.5, Usl=0 and x = y = 0.5 and keeping the system
fixed at half-filling, we obtain the corresponding T s

c and
T l

c for different values of D (see Fig.4(b)). As seen from
this figure, T s

c remains constant with increasing disorder
strength D since randomness in the l-band does not affect
the s-band in the presence of intra-band pairing alone. T l

c

is however suppressed with increasing D. At this point
however it must be noted that only the higher of the two
critical temperatures [T s

c and T l
c ] is physically significant

in this respect. So in the present case, Tc first decreases
with disorder and then becomes constant when T s

c > T l
c .

These conclusions are further strengthened by a study
of the pairing amplitude as a function of temperature,
and the expressions for the temperature-dependent pair-
ing amplitudes are :

1 = |Um|
∫ ∞

−∞

dE
≪ Nm(E) ≫
2 (E2 + ∆2

m)
1

2

tanh




(
E2 + ∆2

m

) 1

2

2kBT




for the m = s or l-bands.

We see that with the increase in disorder strength D in
the l-band the temperature dependent pairing amplitude
∆l reduces much like the zero-temperature pairing ampli-
tude (see Fig. 4(c)). Since randomness in the l-channel
does not affect the s-band thus ∆s(T ) is not affected
by D so we have plotted ∆s(T ) vs T only at D=0 (see
Fig. 4(c)). We conclude from Fig. 4(b) and (c) that
for temperatures below the critical temperatures though
disorder (D) suppresses ∆(T ), but does not reduce it to
zero.

The next set of studies is the investigation of the
increasing strength of the disorder D on a two band



9

1 1.5 2 2.5 3
Disorder Strength (D)

0

0.15

0.3

0.45

0.6

   
   

   
∆

∆
∆

s
lUs=Ul=2.0

Usl=1.0

(a)

0 0.5 1 1.5 2 2.5 3
Disorder Strength D

0.5

0.6

0.7

0.8

T
c

Tc
s

Tc
l

(b)

0.2 0.4 0.6 0.8
kBT

0

0.5

1

1.5

2

2.5

∆

D=0
D=1
D=2
D=3
D=0 ∆  (Τ)

∆  (Τ)
∆  (Τ)
∆  (Τ)
∆  (Τ)

s
l
l
l
l(c)

FIG. 4: (Color online) (a) Variation of ∆ as a function of
disorder strength (D) in the l-band when Us = Ul > Usl.
(b) Variations of s-band and l-band critical temperatures T

s

c

and T
l

c as a function of disorder strength D when only intra-
band pairing occurs in a two-band s-wave superconductor in
a square lattice. (c) Variation of ∆s(T) and ∆l(T) with T for
various strengths of disorder D in the l-band.

attractive-U Hubbard model with dominant inter-band
attractive interaction Usl > Us, Ul. In the parameter
regime Us=Ul=1.0 < Usl the dominant pairing is the
inter-band pairing Usl and it affects both the bands. In
contrast to the case of only intra-band pairing , here for
a critical strength of disorder D>2 the pairing amplitude
∆sl vanishes indicating the possible disappearance of su-

1 1.5 2 2.5 3
Disorder Strength (D)
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0.3

0.4

0.5

∆

∆ sl

Us=Ul=1.0
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P
D

O
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D=1.5
D=3.0

s-band

(b)
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0

0.1
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0.3

0.4

P
D

O
S

D=1.0
D=1.5
D=3.0

l-band

(c)

FIG. 5: (Color online) (a) Variation of ∆ with disorder
strength (D) in the l-band when Us=Ul < Usl.(b) and (c)
studies DOS for a square-lattice superconducting system with
disorder in the l-band when Us= Ul < Usl.

perconductivity [see Fig. 5(a)]. This is further illustrated
in the DOS plot for the s and l channels in Fig. 5(b) and
Fig. 5(c) respectively. Here the presence of randomness
in the l channel affects ∆sl and this in turn affects both s
and l PDOS. With increasing disorder D in the l-channel
the gaps both in the s PDOS and l PDOS reduces. Even-
tually finite DOS at the Fermi level is realized indicating
absence of superconductivity.

Finally we address the situation when disorder is intro-
duced in both s- and l-channels. When the interaction
is such that Us = Ul > Usl [Fig. 6(a)], then only ∆s and
∆l are non-zero even for strength of disorder as large
as D=2.5 indicating the presence of superconductivity.
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However in the limit Usl > Us = Ul [Fig.6(b)], we see
that ∆sl decreases rapidly with disorder and finally van-
ishes. These features are very similar to the case when
disorder was introduced in only one channel.

1 1.5 2 2.5
D
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0.2

0.3

0.4
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∆
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(a)
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∆

∆sl
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(b)

FIG. 6: A study of ∆ as a function of disorder strength (D) in
the s and l-band for (a) Us = Ul > Usl and (b) Us = Ul < Usl

for a 2D superconducting system having two-bands. Here
the intraband hopping integrals ts=1.0 and tl=0.5 and the
interband hopping integral tsl=0.0.

C. Summary.

In this paper we have developed a real space ap-
proach to study the effect of disorder on multi-band
superconductivity using a two-band Hubbard Hamilto-
nian to model our system and augmented space vector-
recursion22,23 method to treat randomness in our system.
We have established the accuracy of our method by com-
paring our results in ordered systems with those obtained
earlier using other techniques. For ordered systems we
have seen gaps in both bands in the presence of intra-
band pairing. In the presence of both intraband and in-

terband momentum independent pairing, depending on
the relative magnitude of the pairing strength, only a
particular kind of pairing is possible for a half-filled s−
like two band systems.

We have then studied the effect of randomness in one
of the bands. When only intra-band pairing occurs, ran-
domness in one channel does not affect the other. But
in the presence of inter-band pairing both the bands are
affected by randomness. By increasing the strength of
disorder superconductivity survives in the presence of
intra-band pairing although the pairing amplitudes de-
crease with disorder.However for interband pairing the
gap in the quasiparticle spectrum ceases to exist beyond
a critical value of the disorder strength. In the case of
interband pairing, where the Cooper pairs are formed by
electrons belonging to two different bands, we speculate
that phase coherence of the superconducting state is more
sensitive to disorder. The lack of phase coherence due to
disorder is probably responsible for the disappearance of
superconductivity. The same conclusion holds good when
disorder is introduced in both the bands. Our calcula-
tion indicates inter-band pairing in multiband systems
is not only interesting but opens up a paradigm beyond
Anderson’s theorem11 to understand superconductivity
in disordered systems.
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