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We apply a new Kubo-Greenwood type formula combined with a generalized Feynman diagram-
matic technique to report a first principles calculation of the thermal transport properties of dis-
ordered Fe1−xCrx alloys. The diagrammatic approach simplifies the inclusion of disorder-induced
scattering effects on the two particle correlation functions and hence renormalizes the heat current
operator to calculate configuration averaged lattice thermal conductivity and diffusivity. The ther-
mal conductivity κ(T ) in the present case shows an approximate quadratic T -dependence in the low
temperature regime (T < 20 K), which subsequently rises smoothly to a T -independent saturated
value at high T . A numerical estimate of mobility edge from the thermal diffusivity data yields
the fraction of localized states. It is concluded that the complex disorder scattering processes, in a
force-constant dominated disorder alloys such as Fe-Cr, tend to localize the vibrational modes quite
significantly.

PACS numbers: 66.70.-f, 66.30.Xj,63.20.Pw

The study of phonon excitations and the associated
thermal transport properties is an important field of re-
search in disordered alloys. In certain materials, dis-
order mediated scattering can shrink the typical mean
free path (MFP) of phonons to such a level that wave-
length and MFP no longer remain sharp concepts, and
the usual textbook phonon gas model for thermal conduc-
tivity breaks down. From the theoretical perspective, the
development of a reliable quantum mechanical theory to
predict such properties in random alloys is a difficult task
mainly because of two problems : (i) one needs a micro-
scopic description of inter-atomic force constants with an
intrinsic off-diagonal disorder and (ii) one has to configu-
ration average a two-particle correlation function using a
Kubo-type formula. The effects of dominant off-diagonal
force constant disorder in alloys can be quite unusual, as
we have shown earlier.1 Most theories of thermal trans-
port, developed in the past few decades however, are ei-
ther based on the single-site coherent potential approxi-
mation (CPA)2, the perturbation-based approach simu-
lating the Peierls-Boltzmann equation (PBE)3 or atom-
istic models with a large unit cell and periodic boundary
conditions.4 CPA, being a single-site mean-field approxi-
mation, is inadequate for treating multi-site off-diagonal
disorder arising out of force constants. The CPA is un-
able to adequately explain experimental life-time data
on simple Ni-Pt alloys.5 The perturbative simulation ap-
proach, although rigorously derived, is limited in appli-
cability to model lattices alone and has not been tested
on realistic materials. The atomistic models are compu-
tationally expensive due to the large unit-cell size, non-
self-consistent and suffer from the finite size errors.

In a recent paper6 we have developed a theoretical
approach to calculate the configuration averaged lattice
thermal conductivity and diffusivity for random alloys.
This formalism combined a Kubo-Greenwood approach
with a generalized Feynman diagrammatic technique to
explicitly incorporate the effect of disorder induced scat-
tering. We showed that disorder scattering renormalizes
both the phonon propagators as well as the heat cur-
rents. These corrections are related to the self-energy
and vertex corrections. Unlike the single-site CPA, this
approach explicitly takes into account the fluctuations
in masses (diagonal) , force constants and heat currents
(off-diagonal disorder) between different ion-cores and in-
corporates the sum rule relating the diagonal element of
the force constant to the off-diagonal ones. In the present
paper, we combine this theoretical approach with a first-
principles Quantum-ESPRESSO (QE) calculation7 of the
force-constants. QE is a linear response based method :
the density functional perturbation theory (DFPT).8 The
dynamical matrix for the phonon excitation of a system
is obtained from the ground state electron charge den-
sity and its linear response to a distortion of the ion-core
geometry. We refer the reader to a recent article9 for
further computational details on Fe1−xCrx alloys. This
alloy, being a basic ingredient of stainless steel, is a tech-
nologically important structural material, dominated by
force-constant disorder and hence should serve as a crit-
ical test of our theory for the thermal transport proper-
ties.

We find that the disorder induced scattering effects
on the thermal conductivity, κ(T ), is relatively large in
the low frequency regime. κ(T ) shows a quadratic T -
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FIG. 1: (Color Online) (Top row) Dyson’s Equation due to
scattering diagrams for the single particle averaged Green’s
functions for disordered alloys. (Middle Row) Bethe-Salpeter
equation for the response functions in disordered alloys. (Bot-
tom Row) Key to diagrams. < G > is the averaged disorder
renormalized Green’s function, < κ > is the two-particle cor-
relation function related to Thermal conductivity, Σ is the self
energy and S is the disorder-renormalized effective current.

dependence in the low temperature range, where only low
energy vibrations are excited, and then smoothly rises
to a T -independent saturated value at high T . Ther-
mal diffusivity manifests the effect of disorder in a more
dramatic fashion, and gives an idea about localization.
Based on our calculation on Fe1−xCrx alloys, a large frac-
tion (> 90 %) of vibrational eigenstates are found to be
localized with the maximum localization near 50-50 com-
position, where the disorder scattering is maximum, as
expected.

For disordered materials, the lattice thermal conduc-
tivity requires the configuration average of the response
functions of the kind (see Ref. 6),

〈〈κ(z1, z2, T )〉〉 =
∫

d3
k

8π3
Tr

[

〈〈S(k, T )G(k, z1)S(k, T )G(k, z2)〉〉
]

,(1)

where S is the heat current operator and G is the phonon
propagator.〈〈 〉〉 denotes configuration averaging.

The right hand side of (1) involves the configuration
average of four random functions whose fluctuations are
correlated. Unlike the configuration average of a single
particle Green function 〈〈G(k, z)〉〉, which can be calcu-
lated via a perturbative self-consistent Dyson’s equation
(shown diagrammatically in the 1st row of Fig. 1), the
average of a two-particle correlation function such as that
in (1) is non-trivial. The zeroth order approximation for
such an average is the one which assumes the fluctuations
between all four random functions to be uncorrelated,
and expresses the average of the product as the prod-
uct of the averages (as in the so called Virtual Crystal
Approximation (VCA)). The inherent correlation, how-
ever, requires the contributions from averages taken in
pairs, triplets and all four random functions. Such disor-
der induced corrections can be calculated very efficiently
within a Feynman diagrammatic technique (details have
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FIG. 2: (Color Online) Frequency dependence of Thermal
conductivity and Joint density of states for Fe53Cr47 alloy at
T = 200 K. Solid line shows the result including all disorder-
induced corrections + the vertex correction (middle row of
Fig. 1) and dashed line including the VCA average alone.

been discussed in Ref. 6), which renormalizes both the
phonon propagators as well as the heat currents to pro-
vide a mathematical expression for 〈〈κ〉〉 with an effective

heat current Seff related to the self-energy of the propa-
gators (shown by 1st diagram on RHS of the middle row
of Fig. 1). The last term in the middle row gives the
contribution from the so called vertex correction arising
out of the correlated propagation. For a harmonic solid,
thermal diffusivity has a similar expression as 〈〈κ〉〉 ex-
cept the product of five random functions instead of four.
A similar diagrammatic procedure has been used earlier
by us6 to calculate the configuration averaged thermal
diffusivity as given by

〈〈D(ν)〉〉 =
1

π2

∫

dν′

∫

d3
k

8π3

Tr
[

〈〈ℑmG(k, ν′)S(k)ℑmG(k, ν′)S(k)ℑmG(k, ν)〉〉
]

.

In Fig. 2, we display the frequency dependence of lat-
tice thermal conductivity κ(ν) and the scaled joint den-
sity of states J(ν) at T = 200 K for the Fe53Cr47 alloy.
It is obvious from the figure that the transition rate τ
(related to the heat current operator) is strongly depen-
dent both on the initial and final energies throughout
the phonon spectrum i.e. κ(ν, T ) 6= |τ(ν, T )|J(ν), where
J(ν) (shown by dot-dashed line in Fig. 2) is given by

〈〈J(ν)〉〉 =
∫

dν′

∫

d3
k

8π3
Tr

[

ℑm〈〈G(k, ν′)〉〉ℑm〈〈G(k, ν′ + ν)〉〉
]

.

The effect of disorder-induced renormalized corrections
(black solid lines) to the zeroth order virtual-crystal-
approximation (VCA) (blue dashed line) thermal con-
ductivity is not significant, and becomes negligibly small
beyond ν = 2.7 THz. The traditional single site mean-
field approximation is, therefore, expected to describe
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FIG. 3: (Color Online) Temperature dependence of Thermal
conductivity (κ) for three Fe1−xCrx alloys. Inset shows the
quadratic T -dependence of κ in the low T -range.

well the multiple scattering phenomenon associated with
the high frequency mode, deviating only in the low fre-
quency range where the higher order corrections become
important. Notably, both κ(ν) and J(ν) curve has a
dip at a very small energy (ν ≃ 0). Such a dip reflects
the missing intraband contribution (κII) to the conduc-
tivity. The origin of this dip is a natural outcome of
a smooth convolution of two Green matrices G(k, ν′)
and G(k, ν′ + ν) (or two smooth DOS). A similar dip
has also been reported by Feldman et al.4 in amorphous
Si and Si1−xGex alloys. Unlike our case (κ(ν) → 0 as
ν → 0), this dip in their calculation stands at a finite
value as ν → 0. These authors have introduced an arbi-
trary Lorenzian broadening of the delta functions in their
Kubo-Greenwood expression for κ, while in our calcula-
tion this arises naturally through the disorder induced
broadening of the spectral function ℑm[G(k, ν)]. An ex-
trapolation of our κ(ν)-curve (see Fig. 2) from a value
just above ν = 0 to a value at ν = 0 yields an estimate
of the dc thermal conductivity, which comes out to be
24.7 W/m/K for the present Fe53Cr47 alloy at T = 200 K.
Unfortunately, We could not find any experimental data
for the same alloy composition to compare with.

Figure 3 shows the temperature dependence of ther-
mal conductivity for three Fe1−xCrx alloys. Note that
κ(T ) behaves quadratically (see inset) in the low tem-
perature regime (T < 20 K) where only low-energy vi-
brations are excited. As the temperature is increased fur-
ther, the T -dependence of κ becomes much milder and
eventually reaches a T -independent saturated value. The
origin of such a high T -saturation is not very well de-
scribed by most previous theories. Within a harmonic
approximation, such a saturation mainly arise from the
T -dependence of Einstein specific heat piece of the con-
ductivity expression.4 The intrinsic harmonic diffusion
of higher energy delocalized vibrations are mostly re-
sponsible for the relevant dominant mechanism in this
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FIG. 4: (Color Online) Thermal diffusivity (top) and DOS
(bottom) vs. phonon frequency (ν) for Fe53Cr47 alloy. In-
set shows an approximate linear ν-dependence of D(ν) above
2 THz. νc locates the mobility edge and area under the shaded
region gives an estimate of the fraction of delocalized states.

regime. Another qualitative explanation can be that :
the phonon-phonon scattering in this high T -range be-
comes so strong that the phonon MFPs reach a minima,
and further enhancing the disorder scattering by rais-
ing temperature would not cause any further reduction
in the MFP, hence resulting in a T -independent thermal
conductivity. This, however, is just a physically plausible
explanation based on the MFP and is not intended to re-
flect a known outcome of the proposed theory itself. One
can also notice an overall reduction of κ with increasing
disorder (x), as expected. Such effect usually reflect the
scattering arising out of the difference in masses, radii
and force constants between the host lattice atoms and
impurities. In the present Fe1−xCrx alloy, however, this
scattering is mainly dominated by a large difference of
force constants between Fe and Cr atoms in the alloy,
while their masses and radii are almost similar.

Next, we examine the effect of disorder scattering on
the vibrational eigenstates and hence the localization of
the phonon modes based on a thermal diffusivity calcu-
lation. In Fig. 4, we show the thermal diffusivity (top
panel) and the phonon density of states (bottom panel)
vs frequency for the Fe53Cr47 alloy. Above ν ≃ 2 THz,
D(ν) decreases smoothly (approximately linear in ν) with
a critical frequency νc = 3.55 THz, where D(ν) vanishes
to within a very small level of noise. This regime is
shown, for clarity, as a log-log plot within the inset of the
upper panel. The calculated critical exponent α ≃ 1.011
agrees with the scaling and other theories of Anderson
localization.10 The critical frequency νc locates the mo-
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FIG. 5: Mobility edge (top) and the percentage of localized
states (bottom) vs Cr-concentration for Fe1−xCrx alloy.

bility edge above which the diffusivity strictly goes to
zero in the infinite size limit, and the allowed vibrational
states below this frequency remain delocalized. This is
shown by the area under the shaded region in the lower
panel which gives an estimate of the percentage of delo-
calized states.

An alternative way of estimating the fraction of lo-
calized (delocalized) states is to calculate the so called
“inverse participation ratio” 1/pγ defined as, 1/pγ =
∑

µ

∫

(d3k/8π3) ǫµ
γ(k), where ǫµ

γ(k) is the µth Carte-
sian component of the normalized polarization vector of
the γth mode. pγ measures the number of atoms on
which γth vibrational mode has significant amplitude.

1/pγ → 0 for delocalized mode, but remains finite for lo-
calized modes. Although this procedure provides a quick
assessment of localization, it suffers from a shortcoming
which arises quite often from the existence of an unex-
pected few localized modes in the low frequency regime
(e.g. within the shaded region in the lower panel of Fig.
4), as discussed earlier.4,11

The location of the mobility edge (νc) and the per-
centage of localized states with varying Cr-content in
Fe1−xCrx alloy is shown in Fig. 5. Such a non-
monotonous variation of the fraction of localized states
is an artifact of the varying band-width of the phonon
spectrum with x. Unlike the mass dominated Si1−xGex

alloys4 which show an increasing percentage of localized
states, towards the upper end of the phonon spectrum,
with increasing Ge-concentration, the Fe-Cr alloys show
maximum localization at xCr = 47 %. We believe that,
this arises due to the dominance of the force constant
disorder in the present alloy which causes an enhanced
disorder scattering at x = 47 % and hence localize the
vibrational modes maximally.

In summary, we combine a generalized Kubo-
Greenwood type formula with the linear-response based
QE calculation to make a first principles prediction of the
thermal conductivity and diffusivity of disordered Fe-Cr
alloys. The effect of disorder-induced scattering on κ is
found to decrease with increasing phonon energy. Ther-
mal conductivity shows a quadratic T -dependence in the
low T -regime, increasing smoothly to a T -independent
saturated value at high T . Thermal diffusivity provides
an estimate of the location of mobility edge, which sub-
sequently gives an idea about the disorder-induced local-
ization in the system. Vibrational modes in the present
Fe1−xCrx alloy are maximally localized at x = 47 %,
where the effect of disorder scattering is maximum.

A. Alam acknowledges support from the U.S. Depart-
ment of Energy BES/Materials Science and Engineering
Division from contracts DEFG02-03ER46026 and Ames
Laboratory (DE-AC02-07CH11358), operated by Iowa
State University.

∗ emails: aftab@ameslab.gov,abhijit@bose.res.in
1 Aftab Alam and Abhijit Mookerjee, Phys. Rev. B 69,

024205 (2004); Aftab Alam et al., Phys. Rev. B 75,
134202 (2007).

2 J. K. Flicker and P. L. Leath, Phys. Rev. B 7, 2296
(1973); W. H. Butler, Phys. Rev. B 31, 3260 (1985).

3 Tao Sun and P. B. Allen, Phys. Rev. B 82, 224305 (2010).
4 Philip. B. Allen and Joseph. L. Feldman, Phys. Rev. B

48, 12581 (1993); Joseph L. Feldman et al., Phys. Rev. B
48, 12589 (1993).

5 Y. Tsunoda et al., Phys. Rev. B 19, 2876 (1979).
6 Aftab Alam and Abhijit Mookerjee, Phys. Rev. B 72,

214207 (2005).
7 Quantum-ESPRESSO, is a community project for

high quality quantum-simulation software, based on
density functional theory, and Coordinated by P.
Gianozzi. See http://www.Quantum-Espresso.org and
http://www.pwscf.org

8 S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
9 Aftab Alam et al., Phys. Rev. B 83, 054201 (2011).

10 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985).

11 R. Biswas et al., Phys. Rev. Lett. 60, 2280 (1988).


